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Abstract

We study the consistency of the semi-parametric maximum likelihood
estimator (SMLE) of the Lehmann family (Lehmann (1959)) with right-
censored data. The Lehmann family is a class of survival functions of
the form (So(t))exp(x′β), where So(·) is a survival function and x is a p-
dimensional vector. It is the same as Cox’s regression model iff So is abso-
lutely continuous. The Lehmann family and Cox’s model are both popular
semi-parametric regression models in survival analysis. Consistency proofs
of an estimator under various semi-parametric set-ups are often based on ad-
ditional regularity conditions. We establish the consistency of the SMLE of
the Lehmann family without any additional assumption.

Keywords: Lehmann family, Cox’s model, Semi-parametric Maximum like-
lihood estimator, consistency, Kullback-Leibler Inequality.
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1 Introduction
We study the consistency of the semi-parametric maximum likelihood estimator
(SMLE) of the Lehmann family (Lehmann (1959) or Cox and Oakes (1984,p.24))
with right censored (RC) data.

Let Y be a random variable, X a p-dimensional random vector and g(x) ≥
0. Let FT (= 1− ST ) be the cumulative distribution function (cdf) of T (T = X
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or Y , etc.), fT the density function (df) of T , So(·) a survival function and ho a
hazard function. Let S(·|·) (h(·|·), F(·|·) and f (·|·)) be the conditional survival
function (hazard function, cdf and df) of Y given X = x. The Lehmann family is
the collection of all distributions of the form S(t|x) = (So(t))g(x). We set g(x) =
ex′β as usual. It is a regression model commonly used in the survival analysis and
is also called the proportional integrated hazards model, as lnS(y|x) = ex′βlnSo(y).
Notice that the proportional hazards model or Cox’s model (Cox (1972)) is defined
by h(y|x) = eβ′xho(y) ∀ y < τY , where τY = sup{t : SY (t)> 0}.

The Lehmann family is often mistaken for Cox’s model (see e.g., Sun (2006)
p.18), but they are the same iff So is absolutely continuous (see e.g., Yu et al.
(2008)). Even though Cox’s model was proposed in 1972, later than the Lehmann
family (in 1959), it becomes more popular due to the maximum partial likelihood
estimator (mple) approach. The mple is much simpler and faster to compute than
the SMLE. Finkelstein (1986) points out that the partial likelihood approach does
not work if the data are interval-censored and she proposes to use the SMLE of
Cox’s model. When people specify Cox’s model by S(t|x) = (So(t))ex′β

without
assuming that S′o exists (see e.g. Sun (2006,p.18) or Finkelstein (1986)), they are
actually make use of the Lehmann family rather than Cox’s model.

We make the following assumption in this paper.

(A1) Let (Mi,δi,Xi), i = 1, ..., n, be i.i.d. observations from (M,δ,X), where
M = Y ∧C, C is a random censoring variable, δ = 1(Y ≤ C), 1(A) is the
indicator function of the event A, and (Y,X) and C are independent. S(t|x)=
(So(t))exp(β′x). Sx and SC do not depend on the unknown (β,So).

Under assumption (A1), the density function fM,δ,X may not exist. If it does, then

fM,δ,x(m,δ,x) = (S(m|x))1−δ( f (m|x))δ( fC(m))1−δ(SC(m))δ fx(x), where (1.1)

m ∈ D, and D =

{
(−∞,τM] if P(Y = τM|X = 0) = 0 or P(C ≥ τM)> 0
(−∞,τM) otherwise.

(1.2)

Definition. Under assumption (A1), S(t|x) or (So(t),β) is said to be identifiable
if (So(t))exp(x′β) = (S∗(t))exp(x′β∗) ∀ (t,x) ∈ DM,x => (β,So(t)) = (β∗,S∗(t)) ∀
t ∈ D , where

DT = {t : P(||T − t||< ε)> 0 ∀ ε > 0}, and T = (M,X), or X, or Y (1.3)

etc. and || · || is a norm.
The generalized likelihood function defined by Kiefer and Wolfowitz (1956)

is L0(So,β) = ∏n
i=1[(S(Mi|Xi))

1−δi(S(Mi − |Xi)− S(Mi|Xi))
δi ]. Since S(t|x) =

2
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(So(t))ex′β
is the true distribution of Y |(X = x), S(t −|x)−S(t|x) = 0 = L0(So,β)

if So is continuous. The SMLE of (So,β), denoted by (Ŝo, β̂), maximizes R0(S∗,β∗)
over all possible discrete survival function S∗ and over all β∗ ∈R p (R =(−∞,∞)).
Denote Ŝ(t|x) = (Ŝo(t))exp(β̂′x). Wong and Yu (2012) show that the Newton-
Raphson method does not always work for the SMLE with censored data, and
propose a feasible algorithm. For given RC data, the algorithm yields an esti-
mate which is the SMLE of (β,So) under Cox’s model assuming So is absolutely
continuous, and is also the SMLE of (β,So) of the Lehmann family without any
restriction on So, in particular, if there exist ties in the data. For technical reason
in the proof, we modify L0(So,β) as follows.

L(So,β) =
n

∏
i=1

[(S(Mi|Xi))
1−δi(S(Mi −ηn|Xi)−S(Mi|Xi))

δi ], where (1.4)

ηn = 1
n ∧min{|Mi −M j| : Mi �= M j, i, j ∈ {1,2, ...,n}}. If So is discrete then

R (So,β) = R0(So,β).
Several classical textbooks (see e.g., Ferguson (1996) and Casella and Berger

(2001)) provide typical sufficient conditions for the consistency of the MLE, such
as

(C1) X1, ..., Xn are i.i.d. observations from f (·;θ), θ ∈ Θ and θo is the true value
of θ;

(C2)
∫
| f (x;θ)− f (x;θo)|dµ(x) = 0 implies that θ = θo (identifiability);

(C3) The densities f (x;θ) have common support, and f (x;θ) is differentiable in
θ;

C4) ln f (t)/ fo(t)≤ K(x), where
∫

K(t) fo(t)dµ(t)< ∞.

We succeed in establishing the consistency of the SMLE of the Lehmann fam-
ily (specified in (A1)) without imposing any additional regularity conditions, pro-
vided that the parameter is identifiable (see Theorem 2). In particular, we allow
the baseline survival function So can be any arbitrary one.

2 The Main Results
We shall first introduce some preliminary results. It is clear that an estimator of
(So,β) is consistency only if (So,β) is identifiable.
Theorem 1. The necessary and sufficient identifiable condition for (So,β) under
(A1) is

3
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(A2) (A2.1) So(τM)< 1, where τM = sup{t : SM(t)> 0};

(A2.2) ∃ 0, x1, ..., xp ∈ Dx (see (1.3)) such that x1, ..., xp are linearly
independent.

Proof. (=>). Suppose (A2) holds. If

(So(t))exp(x′β) = (S∗(t))exp(x′β∗) ∀ (t,x) ∈ DM,x (see (1.3)), (2.1)

then So(t) = (So(t))exp(0′β) = (S∗(t))exp(0′β∗) = S∗(t) ∀ t ∈ D = DM,0, as 0 ∈ Dx.
By (2.1), (So(τM))exp(x′

iβ) = (So(τM))exp(x′
iβ∗), where xi is as in (A2.2).

Thus x′iβ = x′iβ∗ for i = 1, ..., p, as So(τM)< 1 by (A2.1).
=> β = β∗ as β ∈ R p and x1, ..., xp are linearly independent by (A2.2).

Thus (2.1) yields (β∗,S∗(t)) = (β,So(t)) ∀ t ∈ D . That is, (A2) is sufficient.
(<=). If (A2) fails, then either (a) So(τM) = 1, or (b) 0 �∈ Dx, or (c) 0 ∈ Dx but
(A2.2) fails. Thus it suffices to show that (β,So(t)) is not identifiable in these 3
cases.
Case (a). Let S∗(t)= So(τM)= 1 ∀ t ≤ τM. Then 1=(So(t))exp(x′β) = (S∗(t))exp(x′β∗)

∀ t ≤ τM where β∗ = 2β. Hence equation (2.1) holds with β∗ = 2β. Thus β is not
identifiable.
Case (b). Let So(τM) < 1 and S∗(t) = (So(t))2, then ln(−ln(So(t))2) = ln2 +
ln(−lnSo(t)). Taking ln(-ln) on both sides of (2.1) yields x′(β−β∗) = ln2, which
yields β∗ (�= β). That is, ∃ β∗ �= β such that (2.1) holds if 0 �∈ Dx.
Case (c). Let S∗ = So, then taking ln(-ln) on both sides of (2.1) yields x′iβ = x′iβ∗
for i = 1, ..., p. => β = β∗ iff x1, ..., xp are linearly independent. But the latter
condition is violated in Case (c). Thus ∃ β∗ �= β such that (2.1) holds in Case (c).

We shall make use of the Kullback-Leibler (KL) information inequality.
The KL inequality.

∫
fo(t)ln( fo/ f )(t)dµ(t) always exists (though may be ∞),

where fo and f are two densities w.r.t. a measure µ. Moreover,∫
fo(t)ln( fo/ f )(t)dµ(t)≥ 0; with equality iff f = fo a.e. w.r.t. µ.

In the KL inequality, f and fo are the densities of the same type of distri-
butions, e.g., (1) absolutely continuous ones or (2) discrete ones. Then µ is the
Lebesgue measure in Case (1) and the counting measure in Case (2). Under our
semi-parametric set-up, So and S may belong to different types of distributions, or
even the Cantor distribution. Then the densities fo and f , as well as the measure
µ need to be properly defined.
Example 1. Let µ(t) be the cdf of the Cantor distribution on [0,1], fo(t) be its
df (= dµ(t)

dµ(t) = 1(t ∈ A ∩ [0,1])), where A is the Cantor ternary set, and let f be
the df of the uniform distribution on the interval [0,1] with the cdf F(t), then
f (t) = dF(t)

dµ(t) = +∞1(t ∈ [0,1]\A).
∫

f (t)dµ(t) = 0 �= 1 =
∫

fo(t)dµ(t).

4
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Example 2. Let µ(t) be the cdf of a binomial distribution and fo its df, f as in
Example 1, then f (t) = dF(t)

dµ(t) = ∞ if t ∈ (0,1). Again,∫
f (t)dµ(t) = 0 �= 1 =

∫
fo(t)dµ(t).

In both Examples 1 and 2, we expect
∫

fo(t)ln
fo(t)
f (t) dµ(t) ≥ 0, thus the KL

inequality is not directly applicable, as
∫

f (t)dµ(t) �= 1. We shall make use of a
modified KL inequality, which allows

∫
f (t)dµ(t) ∈ [0,1].

Proposition 1 (a modified KL inequality). If fi ≥ 0, µ1 is a measure,
∫

f1(t)dµ1(t)=
1 and

∫
f2(t)dµ1(t)≤ 1, then

∫
f1(t)ln

f1(t)
f2(t)

dµ1(t)≥ 0, with equality iff f1 = f2 a.e.
w.r.t. µ1.
Proof. Without loss of generality (WLOG), we can assume that

∫
f2(t)dµ1(t) =

c ∈ [0,1) and
∫
{to} f1(t)dµ1(t) = 0. Define f3(t) =

{
f2(t) if t �= to
1− c if t = to

,

f4(t) = f1(t)1(t �= to), µ2({t}) = 1(t = to) and µ = µ1 + µ2. Then∫
f4(t)dµ(t) =

∫
f3(t)dµ(t) = 1. Moreover,

0 ≤
∫

f4(t)ln
f4(t)
f3(t)

dµ(t) (by the KL inequality)

=
∫

t �=to
f4(t)ln

f4(t)
f3(t)

dµ1(t)+
∫

t=to
f4(t)ln

f4(t)
f3(t)

dµ1(t)+
∫

f4(t)ln
f4(t)
f3(t)

dµ2(t)

=
∫

t �=to
f4(t)ln

f4(t)
f3(t)

dµ1(t) (as f4(to)ln
f4(to)
f3(to)

(µ1({to})+1) = 0ln0
de f
= 0)

=
∫

t �=to
f1(t)ln

f1(t)
f2(t)

dµ1(t) =
∫

f1(t)ln
f1(t)
f2(t)

dµ1(t) (as
∫

t=to
f1(t)dµ1(t) = 0).

In view of Eq. (1.1), one may write the measure w.r.t. FM,δ,x as

dF(m,s,x) =1(s = 0)dF(m,0,x)+1(s = 1)dF(m,1,x),
dF(m,0,x) =S(m|x)dFC(m)dFx(x), dF(m,1,x) = SC(m)dF(m|x)dFx(x), (2.2)
dF∗(m,s,x) =1(s = 0)S∗(m|x)dFC(m)dFx(x)+1(s = 1)SC(m)dF∗(m|x)dFx(x).

In view of Eq. (2.2), the KL inequality under the Lehmann family is modified as
follows.
Proposition 2. Let S∗(·|·) and S(·|·) be two conditional survival functions. Let
g(t|x) = 1 and

g∗(t|x) =




S∗(t−|x)−S∗(t|x)
S(t−|x)−S(t|x) if S(t −|x)−S(t|x)> 0,

S′∗(t|x)
S′(t|x) if S′(t|x)< 0 and S′∗(t|x) exist,

limsups↓0
S∗(t−s|x)−S∗(t|x)
S(t−s|x)−S(t|x) otherwise.

(2.3)

5
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Then (1)
∫

ln S(t|x)
S∗(t|x)dF(t,0,x)+

∫
ln g(t|x)

g∗(t|x)dF(t,1,x)≥ 0 ∀ S∗(·|·); and
(2) the equality holds iff S∗(t|x) = S(t|x) ∀ t ∈ D and ∀ x (see Eq. (1.2)).

Proof. Treat h∗(t,s|x) = 1(s = 0)S∗(t|x)
S(t|x) + 1(s = 1)g∗(t|x)

g(t|x) as the df of F∗(t,s|x)
w.r.t. the measure dF(t,s|x), where F(t,s,x)=F(t,s|x)Fx(x) induced by (M,δ,x).
Then the df of F(t|x) w.r.t. the measure dF(t,s|x) is

h(t,s|x) = 1(s = 0)S(t|x)
S(t|x) +1(s = 1)g(t|x)

g(t|x) = 1.

Given S∗(t|x), by Proposition 1, 0 ≤
∫

h(t,s|x)ln h(t,s|x)
h∗(t,s|x)dF(t,s|x), and the equal-

ity holds iff S∗(t|x) = S(t|x) ∀ t ∈ D . Thus
0 ≤

∫ ∫
h(t,s|x)ln h(t,s|x)

h∗(t,s|x)dF(t,s|x)dFx(x)
and the equality holds iff S∗(t|x) = S(t|x) ∀ t ∈ D .
Theorem 2. Given assume (A1), the SMLE (Ŝo, β̂) is consistent if (A2) holds.
Proof. let Ωo be the subset of the sample space Ω such that the empirical distri-
bution function (edf) F̂n(t,s,x) based on (Mi,δi,Xi)’s converges to F(t,s,x), the
cdf of (M,δ,X). It is well-known that P(Ωo) = 1. Notice that the SMLE (Ŝo, β̂)
is a function of (ω,n), say (Ŝo(·)(ω,n), β̂n(ω)), where ω belongs to the sample
space and n is the sample size. Hereafter, fix an ω ∈ Ωo, since β̂ (= β̂n(ω)) is
a sequence of vectors in R p, there is a convergent subsequence with the limit
β∗, where the components of β∗ can be ±∞. For simplicity, we shall suppress
(ω,n) hereafter. Moreover, Ŝo is a sequence of bounded non-increasing functions,
Helly’s selection theorem ensures that given any subsequence of Ŝo, there exists
a further subsequence which is convergent. By taking convergent subsequence,
WLOG, we can assume that Ŝo → S∗ and β̂ → β∗, where S∗ is nonincreasing and
S∗(0−) = 1 and S∗(∞) = 0. Moreover, S∗(t|x) = (S∗(t))exp(x′β∗).

Since (Ŝo, β̂) is the SMLE, 1
n lnL(Ŝo, β̂)≥ 1

n lnL(So,β), that is,
∫

lnŜ(t|x)dF̂n(t,0,x)+
∫

ln(Ŝ(t −ηn|x)− Ŝ(t|x))dF̂n(t,1,x) (by (1.4))

≥
∫

lnS(t|x)dF̂n(t,0,x)+
∫

ln(S(t −ηn|x)−S(t|x))dF̂n(t,1,x),

where ηn =
1
n ∧min{|Mi −M j| : Mi �= M j, i, j ∈ {1, ...,n}}. The last inequality

yields

0 ≥
∫

ln
S(t|x)
Ŝ(t|x)

dF̂n(t,0,x)+
∫

ln
(S(t −ηn|x)−S(t|x))
(Ŝ(t −ηn|x)− Ŝ(t|x))

dF̂n(t,1,x). (2.4)

By assumption, F̂n(·, ·, ·)(ω)→ F(·, ·, ·) on Ωo. We shall prove that

lim
n→∞

∫
ln

S(t|x)
Ŝ(t|x)

dF̂n(t,0,x)≥
∫

ln
S(t|x)
S∗(t|x)

dF(t,0,x) (in Lemma 2), (2.5)

6
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lim
n→∞

∫
ln
(S(t −ηn|x)−S(t|x))
(Ŝ(t −ηn|x)− Ŝ(t|x))

dF̂n(t,1,x)≥
∫

ln
g(t|x)
g∗(t|x)

dF(t,1,x) (2.6)

(in Lemma 3), where g(t|x)≡ 1 (see Proposition 2) and g∗(t|x) is as in (2.3). Then

0 ≥
∫

ln
S(t|x)
S∗(t|x)

dF(t,0,x)+
∫

ln
g(t|x)
g∗(t|x)

dF(t,1,x) (by Eq.s (2.4), (2.5) and (2.6))

≥0 (by Proposition 2).

In other words,
∫

ln S(t|x)
S∗(t|x)dF(t,0,x)+

∫
ln g(t|x)

g∗(t|x)dF(t,1,x) = 0. Thus S∗(t|x) =
S(t|x) (i.e., (S∗(t))exp(β′

∗x) = (So(t))exp(β′x)) ∀ (t,x) ∈ DM,x by Statement (2) of
Proposition 2. As a consequence, (S∗(t),β∗) = (So(t),β) ∀ t ∈ D by Theorem 1.
Recall P(Ωo) = 1, thus the SMLE (Ŝo(t), β̂) is consistent for t ∈ D .

Hereafter, we prove Lemmas 2 and 3 needed in the proof of Theorem 2. We
shall make use of Fatou’s Lemma with varying measures (see Lemma 1 below).
Lemma 1 (Proposition 17 in Royden (1968), page 231). Suppose that µn is a
sequence of measures on the measurable space (S ,B) such that µn(B)→ µ(B), ∀
B ∈ B , gn and fn are non-negative measurable functions, and lim

n→∞
( fn,gn)(x) =

( f ,g)(x). Then
(1)

∫
f dµ ≤ lim

n→∞

∫
fn dµn;

(2) if gn ≥ fn (≥ 0) and lim
n→∞

∫
gndµn =

∫
gdµ, then

∫
f dµ = lim

n→∞

∫
fndµn.

Corollary 1. Suppose that µn is a sequence of measures on the measurable space
(S ,B) such that lim

n→∞
µn(B)→ µ(B), ∀ B ∈ B , f and fn are integrable functions,

n ≥ 1.

(1) If fn are bounded below and f (x) = lim
n→∞

fn(x), then
∫

f dµ ≤ lim
n→∞

∫
fn dµn.

(2) If fn are bounded below then
∫

lim
n→∞

fn dµ ≤ lim
n→∞

∫
fn dµn.

(3) If fn are bounded below then
∫

ln lim
n→∞

fn dµ ≤ lim
n→∞

∫
ln fn dµn.

(4) If fn are bounded and f (x) = lim
n→∞

fn(x), then
∫

f dµ = lim
n→∞

∫
fn dµn.

The proof is relegated to a technical report (see Yu (2021)) for simplicity.
Lemma 2. Inequality (2.5) in the proof of Theorem 2 holds, that is,

lim
n→∞

∫
ln

S(t|x)
Ŝ(t|x)

dF̂n(t,0,x)≥ ln
S(t|x)
S∗(t|x)

dF(t,0,x).

Proof. For the given ω ∈ Ωo and (S∗,β∗) in Eq. (2.5), as assumed, (Ŝo, β̂)(ω)→
(S∗,β∗). S∗(t|x) = (S∗(t))exp(β′

∗x), which is a continuous function of S∗ and β∗.

7
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Consequently, Ŝ(·|·)→ S∗(·|·). Let µn(B) =
∫

B
Ŝ(t|x)
S(t|x)dF̂n(t,0,x), where B is a mea-

surable set in R p+1. To apply Lemma 1, let

K(t,0,x)de f
=

1
S(t|x)

(≥ Ŝ(t|x)
S(t|x)

), and K(t,0,x) is integrable, as (2.7)
∫

K(t,0,x)dF̂n(t,0,x) =
∫ 1

S(t|x)
dF̂n(t,0,x)

→
∫ 1

S(t|x)
dF(t,0,x) (as ω ∈ Ωo) (2.8)

=
∫ 1

S(t|x)
S(t|x)dFC(t)dFx(x) (by (1.1)).

lim
n→∞

µn(B) = lim
n→∞

∫

B

Ŝ(t|x)
S(t|x)

dF̂n(t,0,x) (2.9)

=
∫

B
lim
n→∞

Ŝ(t|x)
S(t|x)

dF(t,0,x) (by statement (2) of Lemma 1, (2.7) and (2.8))

=
∫

B

S∗(t|x)
S(t|x)

dF(t,0,x) (=
∫

B

S∗(t|x)
S(t|x)

S(t|x)dFC(t)dFx(x) (see Eq.(2.2)))

=
∫

B
dF∗(t,0,x)

de f
= µ(B) (see Eq. (2.2)). (2.10)

Verify that

∫
ln

S(t|x)
Ŝ(t|x)

dF̂n(t,0,x) =
∫

H(
S(t|x)
Ŝ(t|x)

)
Ŝ(t|x)
S(t|x)

dF̂n(t,0,x), where (2.11)

H(t) = t log t ≥−1/e for t > 0 and H(S(t|x)/Ŝ(t|x))≥−1/e. (2.12)

lim
n→∞

∫
ln

S(t|x)
Ŝ(t|x)

dF̂n(t,0,x) = lim
n→∞

∫
H(

S(t|x)
Ŝ(t|x)

)
Ŝ(t|x)
S(t|x)

dF̂n(t,0,x) (by (2.11))

= lim
n→∞

∫
H(

S(t|x)
Ŝ(t|x)

)dµn(t,x) (see (2.9))

≥
∫

lim
n→∞

H(
S(t|x)
Ŝ(t|x)

)dµ(t,x) (by (2.10), (2.12) and Corollary 1)

=
∫

lim
n→∞

H(
S(t|x)
Ŝ(t|x)

)dF∗(t,0,x) (see (2.10))

=
∫ S(t|x)

S∗(t|x)
ln

S(t|x)
S∗(t|x)

dF∗(t,0,x) (see (2.11))
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=
∫ ∫ S(t|x)

S∗(t|x)
ln

S(t|x)
S∗(t|x)

S∗(t|x)dFC(t)dFx(x) (by Eq. (2.2))

=
∫ ∫

ln
S(t|x)
S∗(t|x)

S(t|x)dFC(t)dFx(x)

=
∫

ln
S(t|x)
S∗(t|x)

dF(t,0,x), which is (2.5)).

Lemma 3. Inequality (2.6) in the proof of Theorem 2 holds with g(t|x) ≡ 1 and
g∗(t|x) as in (2.3). That is,

∫
ln g(t|x)

g∗(t|x)dF(t,1,x)≤ lim
n→∞

∫
lnS(t−ηn|x)−S(t|x)

Ŝ(t−ηn|x)−Ŝ(t|x)dF̂n(t,1,x).

Proof. For the given ω ∈ Ωo, Ŝ(t|x)(ω) and (S∗,β∗) in the proof of Theorem
2, denote G(t,x,n) = Ŝ(t−ηn|x)−Ŝ(t|x)

S(t−ηn|x)−S(t|x) , Ak = {(t,x) : G(t,x,n) ≤ k, ∀ n} and

Bk = Ak \ Ak−1, k ≥ 1. Then lim
n→∞

G(t,x,n) = lim
n→∞

Ŝ(t−ηn|x)−Ŝ(t|x)
S(t−ηn|x)−S(t|x) = g∗(t|x) =

g∗(t|x)
g(t|x) as g(t|x) ≡ 1. Since G(t,x,n) is finite for each n, provided that t ∈ DY

(see (1.3)), we have ∫
1(∪k≥1Bk)dF(t,s,x) = 1. (2.13)

For each k ≥ 1, let ak
de f
= lnS(t−ηn|x)−S(t|x)

Ŝ(t−ηn|x)−Ŝ(t|x)1((t,x) ∈ Bk).

lim
n→∞

∫

Bk

ln
S(t −ηn|x)−S(t|x)
Ŝ(t −ηn|x)− Ŝ(t|x)

dF̂n(t,1,x)

≥
∫

Bk

lim
n→∞

ln(
(S(t −ηn|x)−S(t|x))
(Ŝ(t −ηn|x)− Ŝ(t|x))

)dF(t,1,x) (by (2) of Corollary 1,

(as a1 ∈ [0,∞), ak ∈ [ln(1/k), ln(1/(k−1))], k ≥ 2))

=
∫

Bk

ln( lim
n→∞

(S(t −ηn|x)−S(t|x))
(Ŝ(t −ηn|x)− Ŝ(t|x))

)dF(t,1,x) (as ln(x) is continuous )

=
∫

Bk

ln
g(t|x)
g∗(t|x)

dF(t,1,x) (see (2.3))

=
∫

Bk

H(
g(t|x)
g∗(t|x)

)
g∗(t|x)
g(t|x)

dF(t,1,x) (see (2.11) and (2.12))

=
∫

Bk

H(
g(t|x)
g∗(t|x)

)dF∗(t,1,x) (see (2.2))

≥
∫

Bk

(−1/e)dF∗(t,1,x) = (−1/e)
∫

Bk

1dF∗(t,1,x)≥ (−1/e)
∫

1dF∗(t,s,x)≥−1/e;

i.e., lim
n→∞

∫

Bk

ln
S(t −ηn|x)−S(t|x)
Ŝ(t −ηn|x)− Ŝ(t|x)

dF̂n(t,1,x)≥
∫

Bk

ln
g(t|x)
g∗(t|x)

dF(t,1,x) (2.14)

≥−1/e for k ≥ 1. (2.15)

9
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Then lim
n→∞

∫
ln

S(t −ηn|x)−S(t|x)
Ŝ(t −ηn|x)− Ŝ(t|x)

dF̂n(t,1,x)

= lim
n→∞

∑
k≥1

∫

Bk

S(t −ηn|x)−S(t|x)
Ŝ(t −ηn|x)− Ŝ(t|x)

dF̂n(t,1,x) (by (2.13))

= lim
n→∞

∫

k≥1

∫

Bk

ln
S(t −ηn|x)−S(t|x)
Ŝ(t −ηn|x)− Ŝ(t|x)

dF̂n(t,1,x)dν(k) (dν is a counting measure)

≥
∫

k≥1
lim
n→∞

∫

Bk

ln
S(t −ηn|x)−S(t|x)
Ŝ(t −ηn|x)− Ŝ(t|x)

dF̂n(t,1,x)dν(k) (by (1) of Corollary 1 and (2.15))

≥
∫

k≥1

∫

Bk

ln
g(t|x)
g∗(t|x)

dF(t,1,x)dν(k) (by (2.14))

= ∑
k≥1

∫

Bk

ln
g(t|x)
g∗(t|x)

dF(t,1,x) =
∫

ln
g(t|x)
g∗(t|x)

dF(t,1,x). Thus (2.6) holds.

Concluding Remark. The SMLE of β is a consistent estimator of β of the
Lehmann family. If Y is continuous, then the mple is a consistent estimator of
β of the Lehmann family too, but otherwise it is not.
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